Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
2.
Radiol Clin North Am ; 61(6): 1097-1110, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758359

RESUMO

Traditional monoenergetic computed tomography (CT) scans in musculoskeletal imaging provide excellent detail of bones but are limited in the evaluation of soft tissues. Dual-energy CT (DECT) overcomes many of the traditional limitations of CT and offers anatomical details previously seen only on MR imaging. In addition, DECT has benefits in the evaluation and characterization of arthropathies, bone marrow edema, and collagen applications in the evaluation of tendons, ligaments, and vertebral discs. There is current ongoing research in the application of DECT in arthrography and bone mineral density calculation.


Assuntos
Doenças da Medula Óssea , Sistema Musculoesquelético , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Humanos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Sistema Musculoesquelético/diagnóstico por imagem , Coluna Vertebral , Tomografia Computadorizada por Raios X/métodos
3.
Nat Commun ; 14(1): 5053, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598178

RESUMO

Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Camundongos , Distribuição Tecidual , Anticorpos , Engenharia , Macaca fascicularis
4.
Sci Total Environ ; 903: 166255, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574056

RESUMO

Testing hospital wastewater (HWW) is potentially an effective, long-term approach for monitoring trends in antimicrobial resistance (AMR) patterns in health care institutions. Over a year, we collected wastewater samples from the clinical and non-clinical sites of a tertiary hospital and from a downstream wastewater treatment plant (WWTP). We focused on the extent of carbapenem resistance among Enterobacteriaceae isolates given their clinical importance. Escherichia coli and Klebsiella spp. were the most frequently isolated Enterobacteriaceae species at all sampling sites. Additionally, a small number of isolates belonging to ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), except K. pneumoniae, were detected. Of the 232 Klebsiella spp. isolates, 100 (43.1 %) were multi-drug resistant (MDR), with 46 being carbapenem-resistant. Most of these carbapenem-resistant isolates were K. quasipneumoniae (CRKQ) (n = 44). All CRKQ isolates were isolated from the wastewater of a clinical site that includes intensive care units, which also yielded significantly more multi-drug resistant isolates compared to all other sampling sites. Among the CRKQ isolates, blaGES-5 genes (n = 42) were the primary genetic determinant of carbapenem resistance. Notably, three different CRKQ isolates, collected within the same month in HWW and the influent and effluent flow of the WWTP, shared >99 % sequence similarity between their blaGES-5 genes and between their flanking regions and upstream integron-integrase region. The influent isolate was phylogenetically close to K. quasipnuemoniae isolates from wastewater collected in Japan. Its blaGES-5 gene and surrounding sequences were > 99 % identical to blaGES-24 genes found in the Japanese isolates. Our results suggest that testing samples from sites located closer to hospitals could support antibiotic stewardship programs compared to samples collected further downstream. Moreover, testing samples collected regularly from WWTPs may reflect the local and global spread of pathogens and their resistances.

5.
Nat Neurosci ; 26(3): 416-429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635496

RESUMO

Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Microglia , Barreira Hematoencefálica , Distribuição Tecidual , Anticorpos , Encéfalo , Modelos Animais de Doenças , Glicoproteínas de Membrana , Receptores Imunológicos/genética
6.
J Radiol Case Rep ; 16(6): 1-11, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35875366

RESUMO

Subcutaneous panniculitis-like T-cell lymphoma is a rare subtype of cutaneous T-cell lymphomas and represents less than 1% of non-Hodgkin's lymphomas. Currently, the diagnosis is based on clinical and histological findings although clinical features may be nonspecific. Often, it is localised to subcutaneous tissue without lymph node involvement. The literature is sparse but unusual presentations have been described to involve mesentery, breast and even eyelids. Fluorine-18 fluorodeoxyglucose positron-emission tomography/computed tomography has been reported to be useful in assessing disease activity, extent and treatment response in subcutaneous panniculitis-like T-cell lymphoma but we find that it can also be a diagnostic aid for atypical presentations. In our case report, we describe a patient who presented with a neck lump but did not have any other obvious cutaneous lesions. This was biopsied and had histological features in keeping with subcutaneous panniculitis-like T-cell lymphoma. Due to the atypical presentation, positron-emission tomography was crucial for detecting the extracutaneous and likely primary site of disease in the peritoneum, which hence guided the subsequent biopsy to this affected area and confirmed the diagnosis.


Assuntos
Linfoma de Células T , Paniculite , Neoplasias Cutâneas , Humanos , Linfoma de Células T/diagnóstico por imagem , Linfoma de Células T/patologia , Paniculite/diagnóstico por imagem , Peritônio/patologia , Tomografia por Emissão de Pósitrons
7.
J Cell Physiol ; 237(9): 3687-3702, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862065

RESUMO

Glaucoma is a common neurodegenerative blinding disease that is closely associated with chronic biomechanical strain at the optic nerve head (ONH). Yet, the cellular injury and mechanosensing mechanisms underlying the resulting damage have remained critically unclear. We previously identified Annexin A4 (ANXA4) from a proteomic analyses of human ONH astrocytes undergoing pathological biomechanical strain that mimics glaucomatous conditions. Annexins are a family of calcium-dependent phospholipid binding proteins with key functions in plasma membrane repair (PMR); an active mechanism to limit and mend cellular injury that involves membrane and cytoskeletal reorganizations. However, a role for direct membrane damage and PMR has not been well studied in the context of biomechanical strain, such as that associated with glaucoma. Here we report that this moderate strain surprisingly damages cell membranes to increase permeability in a calcium-dependent manner, and induces rapid aggregation of ANXA4 at injury sites. ANXA4 loss-of-function increases permeability, while exogenous ANXA4 reduces it. Furthermore, ANXA4 aggregation is associated with F-actin dynamics in vitro, and remarkably this interaction and aggregation signature is also observed in the glaucomatous ONH in patient samples. Together these studies link moderate biomechanical strain with direct membrane damage and actin dynamics, and identify an active PMR role for ANXA4 in new model of cell injury associated with glaucoma pathogenesis.


Assuntos
Anexina A4 , Glaucoma , Anexina A4/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Glaucoma/metabolismo , Humanos , Proteômica
8.
Diabetes Metab J ; 46(6): 843-854, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35483674

RESUMO

BACKGROUND: Insulin-treated patients with long duration of type 2 diabetes mellitus (T2DM) are at increased risk of ketoacidosis related to sodium-glucose co-transporter 2 inhibitor (SGLT2i). The extent of circulating ketone elevation in these patients remains unknown. We conducted this study to compare the serum ketone response between dapagliflozin, an SGLT2i, and sitagliptin, a dipeptidyl peptidase-4 inhibitor, among insulin-treated T2DM patients. METHODS: This was a randomized, open-label, active comparator-controlled study involving 60 insulin-treated T2DM patients. Participants were randomized 1:1 for 24-week of dapagliflozin 10 mg daily or sitagliptin 100 mg daily. Serum ß-hydroxybutyrate (BHB) levels were measured at baseline, 12 and 24 weeks after intervention. Comprehensive cardiometabolic assessments were performed with measurements of high-density lipoprotein cholesterol (HDL-C) cholesterol efflux capacity (CEC), vibration-controlled transient elastography and echocardiography. RESULTS: Among these 60 insulin-treated participants (mean age 58.8 years, diabetes duration 18.2 years, glycosylated hemoglobin 8.87%), as compared with sitagliptin, serum BHB levels increased significantly after 24 weeks of dapagliflozin (P=0.045), with a median of 27% increase from baseline. Change in serum BHB levels correlated significantly with change in free fatty acid levels. Despite similar glucose lowering, dapagliflozin led to significant improvements in body weight (P=0.006), waist circumference (P=0.028), HDL-C (P=0.041), CEC (P=0.045), controlled attenuation parameter (P=0.007), and liver stiffness (P=0.022). Average E/e', an echocardiographic index of left ventricular diastolic dysfunction, was also significantly lower at 24 weeks in participants treated with dapagliflozin (P=0.037). CONCLUSION: Among insulin-treated T2DM patients with long diabetes duration, compared to sitagliptin, dapagliflozin modestly increased ketone levels and was associated with cardiometabolic benefits.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Pessoa de Meia-Idade , Glicemia , Doenças Cardiovasculares/induzido quimicamente , China , HDL-Colesterol , Insulina/uso terapêutico , Cetonas/uso terapêutico , Fosfato de Sitagliptina/efeitos adversos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
9.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226042

RESUMO

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Receptores da Transferrina , Proteínas Recombinantes de Fusão , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/farmacologia , Lisossomos/metabolismo , Camundongos , Mucopolissacaridose II/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Distribuição Tecidual
10.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622797

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the iduronate-2-sulfatase (IDS) enzyme, resulting in cellular accumulation of glycosaminoglycans (GAGs) throughout the body. Treatment of MPS II remains a considerable challenge as current enzyme replacement therapies do not adequately control many aspects of the disease, including skeletal and neurological manifestations. We developed an IDS transport vehicle (ETV:IDS) that is engineered to bind to the transferrin receptor; this design facilitates receptor-mediated transcytosis of IDS across the blood-brain barrier and improves its distribution into the brain while maintaining distribution to peripheral tissues. Here we show that chronic systemic administration of ETV:IDS in a mouse model of MPS II reduced levels of peripheral and central nervous system GAGs, microgliosis, and neurofilament light chain, a biomarker of neuronal injury. Additionally, ETV:IDS rescued auricular and skeletal abnormalities when introduced in adult MPS II mice. These effects were accompanied by improvements in several neurobehavioral domains, including motor skills, sensorimotor gating, and learning and memory. Together, these results highlight the therapeutic potential of ETV:IDS for treating peripheral and central abnormalities in MPS II. DNL310, an investigational ETV:IDS molecule, is currently in clinical trials as a potential treatment for patients with MPS II.


Assuntos
Barreira Hematoencefálica/metabolismo , Terapia de Reposição de Enzimas/métodos , Iduronato Sulfatase/administração & dosagem , Mucopolissacaridose II/tratamento farmacológico , Receptores da Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/genética , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Destreza Motora/efeitos dos fármacos , Mucopolissacaridose II/genética , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/fisiopatologia , Fenótipo , Filtro Sensorial/efeitos dos fármacos , Esqueleto/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Transcitose
11.
ESC Heart Fail ; 8(5): 3964-3974, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34355511

RESUMO

AIMS: Adipocyte fatty acid-binding protein (AFABP) is associated with cardiovascular diseases in type 2 diabetes. Whether circulating AFABP levels are associated with the risk of heart failure (HF) in type 2 diabetes remains undefined. We investigated the prospective association of circulating AFABP levels with incident HF hospitalization in type 2 diabetes, and its relationship to the use of sodium glucose co-transporter 2 inhibitors (SGLT2i) which reduce HF risk. METHODS AND RESULTS: Baseline serum AFABP level was measured in 3322 Chinese participants without known history of cardiovascular diseases or hospitalization for HF, recruited from the Hong Kong West Diabetes Registry. Its association with incident HF hospitalization was evaluated using multivariable Cox regression analysis. Use of SGLT2i was included as a time-dependent covariate. Among these 3322 participants (52.9% men; mean age 60.0 ± 12.6), 176 (5.3%) developed HF hospitalization over a median follow-up of 8 years. Seven hundred and thirty-one (22%) were started on SGLT2i during the study period (empagliflozin 55.1%, dapagliflozin 44.2%, canagliflozin 0.4%, and ertugliflozin 0.3%). Serum AFABP levels were significantly higher in participants who developed HF hospitalization than those who did not (men: 14.8 vs. 8.3 ng/mL; women: 21.5 vs. 14.6 ng/mL; all: 18.6 vs. 10.9 ng/mL, P < 0.001). In multivariable Cox regression analysis, baseline serum AFABP level was significantly associated with incident HF hospitalization [hazard ratio (HR) 1.38, 95% confidence interval (CI) 1.06-1.80, P = 0.019] independent of the use of SGLT2i, in a model also consisting of age; sex; body mass index; smoking status; duration of diabetes; hypertension, dyslipidaemia; atrial fibrillation; presence of chronic kidney disease and albuminuria; glycated haemoglobin and high-sensitivity C-reactive protein levels; and use of metformin, insulin, aspirin, furosemide, and beta-blockers at baseline. High cumulative defined daily dose (cDDD) of SGLT2i was protective of incident HF hospitalization (HR 0.10, 95% CI 0.01-0.68, P = 0.019). The addition of circulating AFABP level to a clinical model of conventional HF risk factors provided significant improvement in the category-free net reclassification index (11.5%, 95% CI 1.6-22.1, P = 0.02) and integrated discrimination improvement (0.3%, 95% CI 0.1-1.7, P = 0.04). A dose-dependent reduction in cumulative incidence of HF hospitalization in response to SGLT2i, based on cDDD, was more clearly observed in participants with a higher baseline AFABP level above the sex-specific median (P for trend <0.01). CONCLUSIONS: Circulating AFABP level is independently associated with incident HF hospitalization in type 2 diabetes and is potentially helpful in risk stratification for the prevention of HF hospitalization.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Adipócitos , Idoso , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Proteínas de Ligação a Ácido Graxo , Feminino , Insuficiência Cardíaca/epidemiologia , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Biol Chem ; 296: 100118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33234594

RESUMO

Astrocytes can support neuronal survival through a range of secreted signals that protect against neurotoxicity, oxidative stress, and apoptotic cascades. Thus, analyzing the effects of the astrocyte secretome may provide valuable insight into these neuroprotective mechanisms. Previously, we characterized a potent neuroprotective activity mediated by retinal astrocyte conditioned media (ACM) on retinal and cortical neurons in metabolic stress models. However, the molecular mechanism underlying this complex activity in neuronal cells has remained unclear. Here, a chemical genetics screen of kinase inhibitors revealed phosphoinositide 3-kinase (PI3K) as a central player transducing ACM-mediated neuroprotection. To identify additional proteins contributing to the protective cascade, endogenous PI3K was immunoprecipitated from neuronal cells exposed to ACM or control media, followed by MS/MS proteomic analyses. These data pointed toward a relatively small number of proteins that coimmunoprecipitated with PI3K, and surprisingly only five were regulated by the ACM signal. These hits included expected PI3K interactors, such as the platelet-derived growth factor receptor A (PDGFRA), as well as novel RNA-binding protein interactors ZC3H14 (zinc finger CCCH-type containing 14) and THOC1 (THO complex protein 1). In particular, ZC3H14 has recently emerged as an important RNA-binding protein with multiple roles in posttranscriptional regulation. In validation studies, we show that PI3K recruitment of ZC3H14 is necessary for PDGF-induced neuroprotection and that this interaction is present in primary retinal ganglion cells. Thus, we identified a novel non-cell autonomous neuroprotective signaling cascade mediated through PI3K that requires recruitment of ZC3H14 and may present a promising strategy to promote astrocyte-secreted prosurvival signals.


Assuntos
Astrócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunoprecipitação , Neuroproteção/fisiologia , Fosfatidilinositol 3-Quinases/química , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a RNA/genética , Espectrometria de Massas em Tandem
13.
Nutr Cancer ; 73(9): 1746-1757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32811212

RESUMO

Isoprenoids suppress the mevalonate pathway that provides prenyl groups for the posttranslational modification of growth-regulating proteins. We hypothesize that xanthorrhizol and d-δ-tocotrienol synergistically suppress the growth of murine B16 melanoma and human DU145 prostate carcinoma cells. Xanthorrhizol (0-200 µmol/L; half maximal inhibitory concentration [IC50] = 65 µmol/L) and d-δ-tocotrienol (0-40 µmol/L; IC50 = 20 µmol/L) each induced a concentration-dependent suppression of the proliferation of B16 cells and concurrent cell cycle arrest at the G1 phase. A blend of 16.25 µmol/L xanthorrhizol and 10 µmol/L d-δ-tocotrienol suppressed B16 cell proliferation by 69%, an impact greater than the sum of those induced by xanthorrhizol (15%) and d-δ-tocotrienol (12%) individually. The blend cumulatively reduced the levels of cyclin-dependent kinase four and cyclin D1, key regulators of cell cycle progression at the G1 phase. The expression of RAS and extracellular signal-regulated kinase (ERK1/2) in the proliferation-stimulating RAS-RAF-MEK-ERK pathway was downregulated by the blend. Xanthorrhizol also induced a concentration-dependent suppression of the proliferation of DU145 cells with concomitant morphological changes. Isobologram confirmed the synergistic effect of xanthorrhizol and d-δ-tocotrienol on DU145 cell proliferation with combination index values ranging 0.61-0.94. Novel combinations of isoprenoids with synergistic actions may offer effective approaches in cancer prevention and therapy.


Assuntos
Carcinoma , Melanoma Experimental , Animais , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Camundongos , Fenóis , Próstata , Vitamina E/análogos & derivados
14.
Br J Cancer ; 123(10): 1502-1512, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913288

RESUMO

BACKGROUND: Antibody-drug conjugate (ADC) construction poses numerous challenges that limit clinical progress. In particular, common bioconjugation methods afford minimal control over the site of drug coupling to antibodies. Here, such difficulties are overcome through re-bridging of the inter-chain disulfides of cetuximab (CTX) with auristatin-bearing pyridazinediones, to yield a highly refined anti-epidermal growth factor receptor (EGFR) ADC. METHODS: In vitro and in vivo assessment of ADC activity was performed in KRAS mutant pancreatic cancer (PaCa) models with known resistance to CTX therapy. Computational modelling was employed for quantitative prediction of tumour response to various ADC dosing regimens. RESULTS: Site-selective coupling of an auristatin to CTX yielded an ADC with an average drug:antibody ratio (DAR) of 3.9, which elicited concentration- and EGFR-dependent cytotoxicity at sub-nanomolar potency in vitro. In human xenografts, the ADC inhibited tumour growth and prolonged survival, with no overt signs of toxicity. Key insights into factors governing ADC efficacy were obtained through a robust mathematical framework, including target-mediated dispositional effects relating to antigen density on tumour cells. CONCLUSIONS: Together, our findings offer renewed hope for CTX in PaCa therapy, demonstrating that it may be reformatted as a next-generation ADC and combined with a predictive modelling tool to guide successful translation.


Assuntos
Aminobenzoatos/administração & dosagem , Cetuximab/administração & dosagem , Imunoconjugados , Oligopeptídeos/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Aminobenzoatos/química , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Cetuximab/química , Drogas em Investigação/síntese química , Drogas em Investigação/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Terapia de Alvo Molecular/métodos , Mutação , Oligopeptídeos/química , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
15.
J Am Chem Soc ; 142(35): 14805-14809, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786736

RESUMO

Profiling the heterogeneous phenotypes of live cancer cells is a key capability that requires single-cell analysis. However, acquiring information at the single-cell level for live cancer cells is challenging when small collections of cells are being targeted. Here, we report single-cell analysis for low abundance cells enabled by fluorescent droplet cytometry (FDC), an approach that uses a biomarker-specific enzymatic fluorescent assay carried out using a droplet microfluidic platform. FDC utilizes DNA-functionalized antibodies in droplets to achieve specific on-cell target detection and enables characterization and profiling of live cancer cells with single-cell resolution based on their surface phenotype. Using this approach, we achieve live-cell phenotypic profiling of multiple surface markers acquired with small (<40 cells) collections of cells.


Assuntos
Citometria de Fluxo , Corantes Fluorescentes/química , Técnicas Analíticas Microfluídicas , Neoplasias/patologia , Análise de Célula Única , Linhagem Celular Tumoral , Humanos , Masculino , Imagem Óptica , Tamanho da Partícula , Fenótipo , Propriedades de Superfície
16.
J Control Release ; 324: 610-619, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32504778

RESUMO

Pancreatic cancer is usually advanced and drug resistant at diagnosis. A potential therapeutic approach outlined here uses nanoparticle (NP)-based drug carriers, which have unique properties that enhance intra-tumor drug exposure and reduce systemic toxicity of encapsulated drugs. Here we report that patients whose pancreatic cancers express elevated levels of Death Receptor 5 (DR5) and its downstream regulators/effectors FLIP, Caspase-8, and FADD had particularly poor prognoses. To take advantage of elevated expression of this pathway, we designed drug-loaded NPs with a surface-conjugated αDR5 antibody (AMG 655). Binding and clustering of the DR5 is a prerequisite for efficient apoptosis initiation, and the αDR5-NPs were indeed found to activate apoptosis in multiple pancreatic cancer models, whereas the free antibody did not. The extent of apoptosis induced by αDR5-NPs was enhanced by down-regulating FLIP, a key modulator of death receptor-mediated activation of caspase-8. Moreover, the DNA topoisomerase-1 inhibitor camptothecin (CPT) down-regulated FLIP in pancreatic cancer models and enhanced apoptosis induced by αDR5-NPs. CPT-loaded αDR5-NPs significantly increased apoptosis and decreased cell viability in vitro in a caspase-8- and FADD-dependent manner consistent with their expected mechanism-of-action. Importantly, CPT-loaded αDR5-NPs markedly reduced tumor growth rates in vivo in established pancreatic tumor models, inducing regressions in one model. These proof-of-concept studies indicate that αDR5-NPs loaded with agents that downregulate or inhibit FLIP are promising candidate agents for the treatment of pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Linhagem Celular Tumoral , Portadores de Fármacos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
17.
Mol Cancer Ther ; 18(11): 2074-2084, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31363010

RESUMO

Despite frequent overexpression of numerous growth factor receptors by pancreatic ductal adenocarcinomas (PDAC), such as EGFR, therapeutic antibodies have not proven effective. Desmoplasia, hypovascularity, and hypoperfusion create a functional drug delivery barrier that contributes to treatment resistance. Drug combinations that target tumor/stroma interactions could enhance tumor deposition of therapeutic antibodies, although clinical trials have yet to support this strategy. We hypothesize that macromolecular or nanoparticulate therapeutic agents may best exploit stroma-targeting "tumor priming" strategies, based on the fundamental principles of the Enhanced Permeability and Retention phenomenon. Therefore, we investigated the molecular and pharmacologic tumor responses to NVP-LDE225, an SMO inhibitor of sonic hedgehog signaling (sHHI), of patient-derived xenograft models that recapitulate the desmoplasia and drug delivery barrier properties of PDAC. Short-term sHHI exposure mediated dose- and time-dependent changes in tumor microvessel patency, extracellular matrix architecture, and interstitial pressure, which waned with prolonged sHHI exposure, and increased nanoparticulate permeability probe deposition in multiple PDAC patient-derived xenograft isolates. During sHHI-mediated priming, deposition and intratumor distribution of both a nontargeted mAb and a mAb targeting EGFR, cetuximab, were enhanced. Sequencing the sHH inhibitor with cetuximab administration resulted in marked tumor growth inhibition compared with cetuximab alone. These studies suggest that PDAC drug delivery barriers confound efforts to employ mAb against targets in PDAC, and that short-term, intermittent exposure to stromal modulators can increase tumor cell exposure to therapeutic antibodies, improving their efficacy, and potentially minimize adverse effects that may accompany longer-term, continuous sHHI treatment.


Assuntos
Compostos de Bifenilo/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Cetuximab/administração & dosagem , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Piridinas/administração & dosagem , Animais , Compostos de Bifenilo/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Nanopartículas , Neoplasias Pancreáticas/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Singapore Med J ; 60(9): 446-453, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30644525

RESUMO

INTRODUCTION: The identification of population-level healthcare needs using hospital electronic medical records (EMRs) is a promising approach for the evaluation and development of tailored healthcare services. Population segmentation based on healthcare needs may be possible using information on health and social service needs from EMRs. However, it is currently unknown if EMRs from restructured hospitals in Singapore provide information of sufficient quality for this purpose. We compared the inter-rater reliability between a population segment that was assigned prospectively and one that was assigned retrospectively based on EMR review. METHODS: 200 non-critical patients aged ≥ 55 years were prospectively evaluated by clinicians for their healthcare needs in the emergency department at Singapore General Hospital, Singapore. Trained clinician raters with no prior knowledge of these patients subsequently accessed the EMR up to the prospective rating date. A similar healthcare needs evaluation was conducted using the EMR. The inter-rater reliability between the two rating sets was evaluated using Cohen's Kappa and the incidence of missing information was tabulated. RESULTS: The inter-rater reliability for the medical 'global impression' rating was 0.37 for doctors and 0.35 for nurses. The inter-rater reliability for the same variable, retrospectively rated by two doctors, was 0.75. Variables with a higher incidence of missing EMR information such as 'social support in case of need' and 'patient activation' had poorer inter-rater reliability. CONCLUSION: Pre-existing EMR systems may not capture sufficient information for reliable determination of healthcare needs. Thus, we should consider integrating policy-relevant healthcare need variables into EMRs.


Assuntos
Registros Eletrônicos de Saúde , Medicina de Emergência/métodos , Necessidades e Demandas de Serviços de Saúde , Algoritmos , Serviço Hospitalar de Emergência , Hospitais , Humanos , Incidência , Determinação de Necessidades de Cuidados de Saúde , Enfermeiras e Enfermeiros , Assistência Centrada no Paciente , Médicos , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Singapura
19.
Anesthesiology ; 129(3): 477-489, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29889105

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors. METHODS: Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied. RESULTS: The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia. CONCLUSIONS: Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor-dependent pathway may be targeted to prevent delirium.


Assuntos
Anestésicos Intravenosos/farmacologia , Dexmedetomidina/farmacologia , Etomidato/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA-A/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Neurobiol Dis ; 113: 59-69, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438738

RESUMO

Neurons are highly sensitive to metabolic and oxidative injury, but endogenous astrocyte mechanisms have a critical capacity to provide protection from these stresses. We previously reported that the master regulator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) is necessary for retinal astrocytes to mount effective injury responses, with particular regard to oxidative stress. Yet, this pathway has not been well studied in glia. PGC-1α is a transcriptional co-activator that is dysregulated in a variety of neurodegenerative diseases. It functions as a master regulator of cellular bioenergetics, with the ability to regulate tissue specific responses. A key inducer of PGC-1α signaling is adenosine monophosphate-activated kinase (AMPK). Thus, the AMPK-PGC-1α signaling axis coordinates metabolic and oxidative damage responses in the central nervous system (CNS). Here we report that AMPK selectively regulates expression of GCLM (glutamate cysteine ligase modulatory subunit) in astrocytes, but not neurons, through PGC-1α activation. Glutamate cysteine ligase (GCL) is the rate limiting enzyme in the biosynthesis of glutathione (GSH); a critical antioxidant and detoxifying peptide in the CNS. Through this mechanism we describe PGC-1α-dependent induction of GSH synthesis and antioxidant activity in astrocytes, and in the rodent retina in vivo. Furthermore, we demonstrate that therapeutic agonism of this pathway with the AMP mimetic, AICAR, rescues GSH levels in vivo, while reducing RGC death and astrocyte reactivity, following retinal ischemia/reperfusion injury. This mechanism presents a novel strategy for enhancing protective astrocyte antioxidant capacity in the CNS.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/metabolismo , Metabolismo Energético/fisiologia , Glutationa/metabolismo , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Metabolismo Energético/efeitos dos fármacos , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Ribonucleotídeos/metabolismo , Ribonucleotídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...